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We introduce a switching mechanism in the asymptotic occupations of quantum states induced by the
combined effects of a periodic driving and a weak coupling to a heat bath. It exploits one of the ubiquitous
avoided crossings in driven systems and works even if both involved Floquet states have small occupations. It
is independent of the initial state and the duration of the driving. As a specific example of this general
switching mechanism we show how an asymmetric double well potential can be switched between the lower
and upper well by a periodic driving that is much weaker than the asymmetry.
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I. INTRODUCTION

The interplay between a coherent periodic driving force
and the incoherent damping of a thermal environment en-
riches the dynamics of a quantum system and opens new
potential applications �1�. In addition to controlling the tran-
sient dynamics, e.g., with respect to tunneling �2–4�, a con-
trol of the asymptotic state is desirable. The ability to design
a system’s probability distribution, e.g., to switch between
two macroscopically distinguishable states, in the presence
of a thermal environment is a key to quantum control tech-
niques.

The paradigmatic model for switching is a double well
potential which is experimentally realized in superconduct-
ing quantum interference devices �5�, atom-optical potentials
�6,7�, spin tunneling in condensed matter �8�, or in the trans-
fer of protons along chemical bonds �9�. In some cases the
model can be restricted to a two-level system. Different ap-
proaches for switching by a population inversion in driven
two-level systems have been proposed, e.g., induced by sym-
metry breaking �10�, structured environments �11�, strong
nonequilibrium noise �12�, or strong driving �13�. However,
the restriction to a two- or a three-level system limits the
possible switching mechanisms.

Time-periodic quantum systems are best described by
Floquet states, which are solutions of the Schrödinger equa-
tion without the coupling to the environment. When coupling
the time-periodic system weakly to a thermal bath, all Flo-
quet states are asymptotically populated with occupation
probabilities, which can be determined within a Floquet-
Markov approach �14–18�. These occupations are quite dif-
ferent from the canonical distribution of Boltzmann weights
in undriven systems and so far lack an intuitive understand-
ing.

In this paper we demonstrate a dramatic property of time-
periodically driven quantum systems weakly coupled to the
environment: the asymptotic state can be switched to an al-
most orthogonal state by a small parameter variation. This is
in stark contrast to time-independent systems, where the
asymptotic occupations are determined by Boltzmann
weights and vary slowly with a parameter. The proposed
switching mechanism exploits one of the ubiquitous avoided
crossings in driven systems and works even if both involved
Floquet states have small occupations. As a specific example

of this general switching mechanism we show for an asym-
metric double well potential �see Fig. 1�, that a weak peri-
odic driving switches the cycle-averaged asymptotic prob-
ability density from the ground state of the undriven system
in the left well to the right well. Note that the periodic driv-
ing is much weaker than the asymmetry �see Fig. 1�a��, and
therefore this switching is unrelated to previous studies on
hysteretic switching in a driven dissipative double well
�19,20�. We explain the switching mechanism by an effective
rate equation, which combines the effects of the coherent
driving at an avoided crossing of two Floquet states with the
incoherent bath coupling.

The paper is organized as follows: In Sec. II our model
for the periodically driven dissipative double well is intro-
duced. The switching mechanism is investigated in Sec. III.
We finally conclude and discuss advantages of the switching
mechanism in Sec. IV.
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FIG. 1. �a� Asymmetric double well potential and its eigenener-
gies without driving, A=0 �solid line�, and the almost indistinguish-
able variation in the potential for a small driving amplitude A0

�0.008 �dashed and dotted line�. �b� Asymptotic probability den-
sity ��x� for A=0 and a small temperature 1 /�=1 /100, with almost
all probability in the left well. �c� Cycle-averaged asymptotic prob-
ability density ��x� according to Eq. �5� for A=A0, with more than
99% of probability in the right well, demonstrating a weak driving
induced switching to a macroscopically different state �see Fig. 2
for parameters�.
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II. MODEL SYSTEM

As an example we study a particle in an asymmetric
double well potential in the quantum regime, where the
ground state is in the left well and the first excited state is in
the right well �see Fig. 1�a��. It is driven by an additive
time-periodic force, leading to the system Hamiltonian

Hs�t� =
p2

2m
+ V0� x4

x0
4 −

x2

x0
2 +

x

x0
�� + A cos �t�� , �1�

where � is the asymmetry parameter of the double well po-
tential and A and � are the driving amplitude and frequency,
respectively. We introduce the dimensionless quantities x̃

=x /x0, H̃s=Hs /V0, t̃= tV0 /�, �̃=�� /V0, and �eff
=� / ��mV0x0�. In the following we omit the tilde and then
the dimensionless Hamiltonian reads

Hs�t� = −
�eff

2

2

�2

�x2 + x4 − x2 + x�� + A cos �t� . �2�

The Schrödinger equation of a periodically driven quantum
system has according to the Floquet theorem solutions of the
form �i�t�=e−i�itui�t�, with ui�t+T�=ui�t� and T=2	 /� as
the period of the driving. The time-periodic parts ui�t� of the
Floquet states form a complete orthonormal set at all times.
The quasienergies �i can be chosen to lie in the interval
�0,��.

The coupling to a heat bath is modeled in a standard way
by a Hamiltonian �21�

H�t� = Hs�t� + Hb + Hsb. �3�

The bath Hamiltonian Hb=	n�pn
2 / �2mn�+ �mn
n

2 /2�xn
2� de-

scribes an ensemble of noninteracting harmonic oscillators
coupled via Hsb=x	ncnxn to the system. The properties of the
system-bath coupling are given in terms of the spectral den-
sity of the bath J�
�ª 	

2 	n�cn
2 / �mn
n�����
−
n�−��


+
n��. In the continuum limit the spectral density is assumed
to be a smooth function which is linear for an Ohmic bath.
An exponential cutoff beyond the spectral mode 
c leads to
J�
�=�
e−


/
c, where � is proportional to the classical
damping coefficient.

In the presence of the heat bath the state of the system is
described by the reduced density operator ��t�. Its equation
of motion for time-periodic quantum systems has been de-
rived within the Floquet-Markov approach �14–18�: herein
the Floquet formalism ensures a nonperturbative treatment of
the driven systems coherent dynamics. The coupling to the
heat bath is treated perturbatively, which is valid in the limit
of weak coupling between the driven system and the bath.
This approximation requires a rapid decay of bath correla-
tions compared to the typical relaxation time of the system
and we further require �
c. In the following we restrict
the discussion to the limit of large times, larger than the
relaxation time. In this limit the density matrix �ij in the
basis of the periodic parts ui�t� of the Floquet states is ap-
proximated as time-independent �15,18�. Note that the corre-
sponding density operator, 	i,j
ui�t���ij�uj�t�
, is time-
periodic because of the inherent time dependence of the ui�t�.
The matrix elements �ij obey the rate equation

i��i − � j��ij = − 	
k,l

�ljRik;lk + �ilRjk;lk
� − �kl�Rlj;ki + Rki;lj

� �� .

�4�

The complex rates Rij;kl=		m xij�m�xkl
� �m�g��l−�k−m��

describe bath-induced transitions between the Floquet states,
the xij�m� are the Fourier coefficients of the time-periodic
matrix elements �ui�t�
x
uj�t��, and g�
� is the correlation
function of the bath coupling operator. The latter is given by
g�
�=n��
�J�
� /	 with the spectral density J�
� and the
thermal occupation number n��
� of the boson bath with
temperature 1 /�. In numerical studies of Eq. �4�, one has to
use a finite basis of Floquet states. The validity of this ap-
proximation is discussed in Ref. �18�.

III. SWITCHING MECHANISM

We will demonstrate the switching process by studying
the asymptotic spatial probability density averaged over one
period of the driving,

��x� ª lim
t→�

1

T
�

t

t+T

dt��x
��t��
x� . �5�

It can be expressed in terms of the solutions �ij of Eq. �4� by
��x�=	i,j �ij

1
T�0

Tdtuj
��x , t�ui�x , t�. Figure 1�b� shows that for

the undriven double well, A=0, in thermodynamic equilib-
rium at low temperatures almost all probability is in the left
well. This reflects the dominant occupation of the ground
state. Figure 1�c� shows that for a small driving amplitude,
A0�0.008, the probability density is almost completely
transferred to the right well. Note, that the driving amplitude
is so small, that at all times the right well is energetically
higher than the left well. This example demonstrates that a
weak periodic driving not only alters the static Boltzmann
occupation probabilities �15,18� but can switch to an almost
orthogonal and macroscopically different asymptotic state of
the system.

We get a first insight into this dramatic phenomenon from
Figs. 2�a� and 2�b�, where one can see that under the varia-
tion of the driving amplitude A the quasienergy spectrum
shows around A=A0 an isolated avoided crossing of states 2
and 7 originating from the second and the seventh excited
states of the undriven system. We emphasize that both the
ground state, which is dominantly populated at A=0, and the
first excited state, which will turn out to be dominantly popu-
lated at A=A0, are not involved in this avoided crossing.

An intuitive understanding of the switching from the rate
equation seems impossible: tuning through an avoided cross-
ing of the two Floquet states 2 and 7 they exchange their
character and thus drastically affect in Eq. �4� a large number
of rates Rij;kl, where one of the four indices is 2 or 7. In order
to visualize the changes of the density operator due to this
avoided crossing it is convenient to express this operator in a
basis that does not significantly change in the neighborhood
of the avoided crossing. In the subspace of the Floquet states
of the avoided crossing we use the diabatic states 2 and 7,
which would correspond to an exact crossing. Due to the
weak driving amplitude A� they are nearly identical to the
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eigenstates of the undriven system �Fig. 2�b�, inset�. We will
denote quantities in this diabatic basis by a bar.

The diagonal density matrix elements �̄ii in the diabatic
basis are shown in Figs. 2�b� and 2�c�. One observes that �̄00,
which corresponds to being in the ground state of the un-
driven system, drops from close to 1 to almost 0 for A=A0.
In contrast, the probability �̄11 increases almost to 1, which
corresponds to the first excited state being dominantly popu-
lated. The tiny occupations �̄22 and �̄77, i.e., the probabilities
to be in one of the states of the avoided crossing, become
equal. These observations for �̄ii are consistent with the spa-
tial probability density observed in Fig. 1�c� and can indeed
be exploited for a switching between the wells: tuning the
driving amplitude from outside the avoided crossing into its
center is accompanied by a probability transfer from the
former ground state in the left well to the first excited state
localized in the right well.

While the equality �̄22� �̄77 at the center of an avoided
crossing of states 2 and 7 is quite plausible, the main ques-
tion is still unanswered: how can states 0 and 1, which are
not involved in the avoided crossing, interchange their prob-
ability?

A. Effective rate equations

We will answer the above question by using an effective
approximate rate system introduced in Ref. �18�, which is
derived from Eq. �4�,

0 = − �̄ii	
k

R̄ik + 	
k

�̄kkR̄ki, �6�

for the diagonal elements �̄ii in the diabatic basis with an
additional rate

Rac
ª

�

��/��2 + 4d2 �7�

replacing the rates R̄27, R̄72 in Eq. �6� due to the single iso-
lated avoided crossing of diabatic states 2 and 7. Before we
make use of these equations, we make a number of remarks:

the rates R̄ik� R̄ik;ik are expressed in the diabatic basis. The

rate �=�2+�7+ R̄22+ R̄77−2R̄22;77, with �i=	k�i R̄ik�i=2,7�
describes the transitions from the states of the avoided cross-
ing to all other states. It is proportional to � with a factor that
is specific to an individual avoided crossing. The rate Rac

depends on the minimal splitting � of the avoided crossing
and the dimensionless distance dª ��̄7− �̄2� /� from the
avoided crossing. The main assumption used in the deriva-
tion �18� is that all quasienergy splittings �ij, apart from the
isolated avoided crossing of interest, are much larger than the
rates Rij;kl. This is fulfilled for a sufficiently weak coupling to
the heat bath and allows for neglecting almost all off-
diagonal density matrix elements. The only non-negligible
off-diagonal elements are �̄27 and �̄72, which are decoupled
from Eq. �6� and proportional to �̄22− �̄77. The dotted lines in
Figs. 2�b� demonstrate this approximation.

The main advantage of the effective rate system in the
diabatic basis �Eq. �6�� is that tuning the distance d from the
avoided crossing affects exclusively the rate Rac. In the cen-
ter of the avoided crossing, d=0, and for a small enough
coupling to the heat bath, ��, it is much larger than all
other rates. This leads directly to almost equal occupations of
the diabatic states involved in the avoided crossing, �̄22
� �̄77. We explain the dominant occupation of state 1 as the
combined result of the following facts. �i� The overall sta-
tionary probability flux between any two states is in general
nonzero as detailed balance is broken by the periodic driv-
ing. �ii� The rates between neighboring states localized in the
same well are much larger than other intrawell rates as well
as interwell rates �due to the small spatial overlap between
the states of different wells�. Therefore, among the states
confined to the same well detailed balance approximately
holds true, e.g., between states 0 and 2 or states 1 and 3. �iii�
Rac is the dominant rate and induces occupation equality of
states 2 and 7. Figure 2�c� shows the resulting depopulation
of state 2 toward state 7. �iv� Due to the approximate detailed
balance among the states in the left well the relative occupa-
tion of states 0 and 2 remains constant and therefore �̄00
drops down together with �̄22. �v� The states in the right well
equilibrate as before but with increased weights due to prob-
ability conservation. This explains the switching process ob-
served in Fig. 1.

An additional surprising phenomenon is observed in Fig.
2�b�. The impact of the avoided crossing on the occupations
occurs within a significantly broader range of the driving
amplitude A compared to the width of the avoided crossing.
For the parameters of Fig. 2 the full width at half maximum
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FIG. 2. �Color online� �a� Quasienergy spectrum for the 17 low-
est Floquet states vs driving strength A and magnification of the
avoided crossing at A=A0 �solid lines� with �= 
�2�A0�−�7�A0�

�1.82�10−6, the quasienergies corresponding to diabatic states 2
and 7 �dashed lines� and eigenenergies of the undriven potential
�inset�. �b� Stationary occupations �̄ii in the diabatic basis �solid
lines� and approximation based on effective rate Rac �Eqs. �6� and
�7�� �dotted lines�. �c� same as �b� with logarithmic axis for �̄ii. The
parameters are �=0.03, �eff=0.04, �=�eff /0.768, �=100,
�=10−4, and 
c=100.
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of Pr�A�=�0
�dx��x�, the probability to be in the right poten-

tial well �Fig. 3�a��, is a factor of 30 larger than the width of
the avoided crossing. According to Eqs. �6� and �7�, the oc-
cupations change if the magnitude of Rac is larger than or
comparable to other significant rates in Eq. �6�. Since these
rates vary over many orders of magnitude, this criterion may
be fulfilled even beyond the avoided crossing, 
d
�1, quali-
tatively explaining the enlarged width of Pr�A�.

B. Parameter dependence

What are the optimal parameters for this switching effect?
A maximal switching efficiency is achieved by a high value
of the probability in the right well Pr�A�=�0

�dx��x�. This
quantity is shown in Fig. 3�a�. Figure 3�b� demonstrates that
if the coupling to the heat bath is larger than the minimal
splitting of the avoided crossing, ��100�, almost no prob-
ability is switched to the right well. �Note that even for the
largest values of � in Fig. 3�b� the assumption of weak cou-
pling of the Floquet-Markov approach is still fulfilled.� This
is due to the fact that in this limit Rac becomes negligible
compared to the other rates and thus the influence of the
avoided crossing vanishes �18�. In contrast, for small cou-
pling ��� we have a high switching efficiency and one can
show that it is independent of � in the limit �→0.

Figure 3�c� shows the influence of the temperature 1 /�,
which can be related to the level spacing E1−E0 of the un-
driven system. At high temperatures, 1 /��E1−E0, the Flo-
quet states are almost equally occupied resulting in Pr�A0�
�0.5. For temperatures 1 /��E1−E0 the probability in the
right well becomes dominant �while, of course, it vanishes in
the undriven case A=0�. For even lower temperatures, how-
ever, Pr�A0� drops to zero. Here, the occupation equality
�̄22� �̄77 is rendered by an increase in �̄77 toward �̄22 in
contrast to the decrease in �̄22 toward �̄77 in Fig. 2�c�. To-
gether with �̄22 also �̄00 remains constant and therefore

switching does not take place. The origin of this low-
temperature dependence remains open.

C. Minimal example

A minimal example, where one of the partners of the
avoided crossing is the ground state in the left well, is shown
in Fig. 4. The above discussion then simplifies since step �iv�
is eliminated and essentially just three states are involved.
The parameter dependence of Pr�A0� on the effective cou-
pling strength � /� is unchanged and the switching mecha-
nism is maintained even for low temperatures �see Fig. 5�.

For a clear presentation we have above chosen examples
in the limit of a small driving amplitude, where the Floquet
states are not very different from the eigenstates of the un-
driven system. In this case an avoided crossing requires near-
resonant driving, E7−E2�3� in Fig. 2 and E3−E0�3� in
Fig. 4. We have observed switching also in the case of strong
driving, supporting the generality of the proposed switching
mechanism.

IV. CONCLUSION

In conclusion, we demonstrate an unexpected switching
mechanism for an asymmetric double well potential under a
weak periodic driving and a weak coupling to a heat bath. As
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FIG. 3. �a� Total probability in the right well Pr vs driving
amplitude A. �b� and �c� Peak height Pr�A0� vs effective coupling
strength � /� and temperature 1 /�. Diamonds indicate the param-
eters of Fig. 2. The dashed line in �c� gives the probability in the
right well without driving, A=0. The dotted line at 1 /�=E1−E0

indicates the transition between the high and the low-temperature
regimes.
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FIG. 4. �Color online� �a� Quasienergy spectrum for the ten
lowest Floquet states vs driving strength A and magnification of the
avoided crossing at A=A0 �solid lines� with �= 
�0�A0�−�3�A0�

�3.57�10−6, the quasienergies corresponding to diabatic states 0
and 3 �dashed lines� and eigenenergies of the undriven potential
�inset�. �b� Stationary occupations �̄ii in the diabatic basis �solid
lines� and approximation based on effective rate Rac �Eqs. �6� and
�7�� �dotted lines�. �c� same as �b� with logarithmic axis for �̄ii. The
parameters are �=0.08, �eff=0.1, �=0.08165, �=60, �=10−6, and

c=100.
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the origin of the switching we identify an avoided crossing in
the quasienergy spectrum of the system. Under its influence
the asymptotic occupations of all Floquet states dramatically
change even if both involved Floquet states have just small
occupations. We explain this switching mechanism by an ef-
fective rate equation at the avoided crossing.

We now briefly discuss possible advantages of the switch-
ing mechanism in applications. �i� If one uses a laser for the
periodic driving, the amplitude dependence of the switching

mechanism and the beam profile allow switching at a three-
dimensional spatially localized position with a resolution
smaller than the focus width. �ii� In situations where a theo-
retical modeling of the system, e.g., a complex molecule, is
not achievable and no other switching mechanism is known,
the generic appearance of avoided crossings in time-
periodically driven systems suggests the existence of driving
parameters for the desired switching.

We emphasize that this switching mechanism is com-
pletely different from standard techniques which allow to
transfer a wave packet from one well to the other by resonant
or near resonant driving and negligible coupling to a heat
bath. There one has to prepare a specific initial wave packet
and has to apply the driving for a specific duration. In con-
trast, here the initial state of the system is arbitrary, the du-
ration of the driving is arbitrary �if larger than the relaxation
time�, and the presence of the heat bath is essential.
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